Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.305
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672482

RESUMEN

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Asunto(s)
Neoplasias Encefálicas , Receptores de Hialuranos , Ácido Hialurónico , Factores de Transcripción SOXB1 , Esferoides Celulares , Ácido Hialurónico/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Animales , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Ratas , Transcriptoma/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Tumorales Cultivadas , Fusión Celular
2.
Biofabrication ; 16(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38663395

RESUMEN

Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.


Asunto(s)
Doxorrubicina , Especies Reactivas de Oxígeno , Esferoides Celulares , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Doxorrubicina/farmacología , Fusión Celular , Neoplasias/patología , Neoplasias/metabolismo , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células , Movimiento Celular , Ingeniería de Tejidos
3.
Curr Top Dev Biol ; 158: 53-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670716

RESUMEN

Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.


Asunto(s)
Fusión Celular , Humanos , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Células Musculares/metabolismo , Células Musculares/citología , Proteínas Musculares/metabolismo , Proteínas Musculares/genética
4.
Cancer Med ; 13(4): e6940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38457216

RESUMEN

BACKGROUND: Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS: Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS: Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION: After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Boca/patología , Fusión Celular , Línea Celular Tumoral , Movimiento Celular/genética , Transducción de Señal/genética , Macrófagos/metabolismo , Quimiocinas/metabolismo , Neoplasias de Cabeza y Cuello/patología
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339201

RESUMEN

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Asunto(s)
Nucleobindinas , Placenta , Placentación , Trofoblastos , Animales , Femenino , Embarazo , Ratas , Cadherinas/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Fusión Celular , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipasa C gamma/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Nucleobindinas/metabolismo
6.
Viruses ; 16(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38400027

RESUMEN

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Asunto(s)
Herpesvirus Humano 1 , Humanos , Animales , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Fusión Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Vero , Internalización del Virus , Fusión de Membrana
7.
Cancer Sci ; 115(2): 600-610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037288

RESUMEN

Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Fusión Celular , Neoplasias/genética , Línea Celular Tumoral , Microambiente Tumoral
8.
Cancer Gene Ther ; 31(1): 158-173, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990063

RESUMEN

MSCs (mesenchymal stem cells), responsible for tissue repair, rarely undergo cell fusion with somatic cells. Here, we show that ~5% of bladder cancer cells (UMUC-3) fuses with bone marrow-derived MSC (BM-MSC) in co-culture and maintains high tumorigenicity. In eleven fusion cell clones that have been established, Mb-scale deletions carried by the bladder cancer cells are mostly absent in the fusion cells, but copy number gains contributed by the cancer cells have stayed. Fusion cells exhibit increased populations of mitotic cells with 3-polar spindles, indicative of genomic instability. They grow faster in vitro and exhibit higher colony formation in anchorage-independent growth assay in soft agar than the parent UMUC-3 does. Fusion cells develop tumors, after 4 weeks of time lag, as efficiently as the parent UMUC-3 does in xenograft experiments. 264 genes are identified whose expression is specifically altered in the fusion cells. Many of them are interferon-stimulated genes (ISG), but are activated in a manner independent of interferon. Among them, we show that PD-L1 is induced in fusion cells, and its knockout decreases tumorigenesis in a xenograft model. PD-L1 is induced in a manner independent of STAT1 known to regulate PD-L1 expression, but is regulated by histone modification, and is likely to inhibit phagocytosis by PD1-expressing macrophages, thus protecting cancer cells from immunological attacks. The fusion cells overexpress multiple cytokines including CCL2 that cause tumor progression by converting infiltrating macrophages to tumor-associated-macrophage (TAM). The results present mechanisms of how cell fusion promotes tumorigenesis, revealing a novel link between cell fusion and PD-L1, and underscore the efficacy of cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Fusión Celular , Monitorización Inmunológica , Interferones , Carcinogénesis , Línea Celular Tumoral
9.
Results Probl Cell Differ ; 71: 407-432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37996688

RESUMEN

Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.


Asunto(s)
Neoplasias , Humanos , Fusión Celular , Neoplasias/patología
10.
Viruses ; 15(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38140682

RESUMEN

Syncytin-1 and -2 are glycoproteins encoded by human endogenous retrovirus (hERV) that, through their fusogenic properties, are needed for the formation of the placental syncytiotrophoblast. Previous studies suggested that these proteins, in addition to the EnvP(b) envelope protein, are also involved in other cell fusion events. Since galectin-1 is a ß-galactoside-binding protein associated with cytotrophoblast fusion during placental development, we previously tested its effect on Syncytin-mediated cell fusion and showed that this protein differently modulates the fusogenic potential of Syncytin-1 and -2. Herein, we were interested in comparing the impact of galectin-1 on hERV envelope proteins in different cellular contexts. Using a syncytium assay, we first demonstrated that galectin-1 increased the fusion of Syncytin-2- and EnvP(b)-expressing cells. We then tested the infectivity of Syncytin-1 and -2 vs. VSV-G-pseudotyped viruses toward Cos-7 and various human cell lines. In the presence of galectin-1, infection of Syncytin-2-pseudotyped viruses augmented for all cell lines. In contrast, the impact of galectin-1 on the infectivity of Syncytin-1-pseudotyped viruses varied, being cell- and dose-dependent. In this study, we report the functional associations between three hERV envelope proteins and galectin-1, which should provide information on the fusogenic activity of these proteins in the placenta and other biological and pathological processes.


Asunto(s)
Retrovirus Endógenos , Placenta , Femenino , Humanos , Embarazo , Línea Celular , Retrovirus Endógenos/metabolismo , Galectina 1/metabolismo , Productos del Gen env/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Fusión Celular
11.
Biomolecules ; 13(11)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-38002309

RESUMEN

Cell fusion in the placenta is tightly regulated. Suppressyn is a human placental endogenous retroviral protein that inhibits the profusogenic activities of another well-described endogenous retroviral protein, syncytin-1. In this study, we aimed to elucidate the mechanisms underlying suppressyn's placenta-specific expression. We identified the promoter region and a novel enhancer region for the gene encoding suppressyn, ERVH48-1, and examined their regulation via DNA methylation and their responses to changes in the oxygen concentration. Like other endogenous retroviral genes, the ERVH48-1 promoter sequence is found within a characteristic retroviral 5' LTR sequence. The novel enhancer sequence we describe here is downstream of this LTR sequence (designated EIEs: ERV internal enhancer sequence) and governs placental expression. The placenta-specific expression of ERVH48-1 is tightly controlled by DNA methylation and further regulated by oxygen concentration-dependent, hypoxia-induced transcription factors (HIF1α and HIF2α). Our findings highlight the involvement of (1) tissue specificity through DNA methylation, (2) expression specificity through placenta-specific enhancer regions, and (3) the regulation of suppressyn expression in differing oxygen conditions by HIF1α and HIF2α. We suggest that these regulatory mechanisms are central to normal and abnormal placental development, including the development of disorders of pregnancy involving altered oxygenation, such as preeclampsia, pregnancy-induced hypertension, and fetal growth restriction.


Asunto(s)
Retrovirus Endógenos , Trofoblastos , Femenino , Humanos , Embarazo , Fusión Celular , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Productos del Gen env/genética , Productos del Gen env/metabolismo , Oxígeno/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
12.
Cell Reprogram ; 25(5): 251-259, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37847898

RESUMEN

In mammals, differentiated cells generally do not de-differentiate nor undergo cell fate alterations. However, they can be experimentally guided toward a different lineage. Cell fusion involving two different cell types has long been used to study this process, as this method induces cell fate alterations within hours to days in a subpopulation of fused cells, as evidenced by changes in gene-expression profiles. Despite the robustness of this system, its use has been restricted by low fusion rates and difficulty in eliminating unfused populations, thereby compromising resolution. In this study, we address these limitations by isolating fused cells using antibody-conjugated beads. This approach enables the microscopic tracking of fused cells starting as early as 5 hours after fusion. By taking advantage of species-specific FISH probes, we show that a small population of fused cells resulting from the fusion of mouse ES and human B cells, expresses OCT4 from human nuclei at levels comparable to human induced pluripotent stem cells (iPSCs) as early as 25 hours after fusion. We also show that this response can vary depending on the fusion partner. Our study broadens the usage of the cell fusion system for comprehending the mechanisms underlying cell fate alterations. These findings hold promise for diverse fields, including regenerative medicine and cancer.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Fusión Celular/métodos , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Mamíferos
13.
Int Rev Cell Mol Biol ; 381: 99-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37739485

RESUMEN

Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated. In this chapter we illustrate the studies that led to the discovery of unconventional CTCs, defined as CTCs that display both epithelial and mesenchymal markers, or both cancer and immune markers, also in the form of hybrid cancer-immune cells. We also present biological explanations for the origin of these unconventional CTCs: epithelial to mesenchymal transition, cell-cell fusion and trogocytosis. We believe that a deeper knowledge on the biology of CTCs is needed to fully elucidate their role in cancer progression and their use as cancer biomarkers.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Fusión Celular , Transición Epitelial-Mesenquimal , Trogocitosis , Incertidumbre
14.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732459

RESUMEN

A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ratones , Drosophila/genética , alfa Catenina , Fusión Celular , Proteínas de Drosophila/genética , Poliploidía
15.
Adv Sci (Weinh) ; 10(29): e2303309, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37590231

RESUMEN

Cell fusion plays a critical role in cancer progression and metastasis. However, effective modulation of the cell fusion behavior and timely evaluation on the cell fusion to provide accurate information for personalized therapy are facing challenges. Here, it demonstrates that the cancer cell fusion behavior can be efficiently modulated and precisely detected through employing a multifunctional delivery vector to realize cancer targeting delivery of a genome editing plasmid and a molecular beacon-based AND logic gate. The multifunctional delivery vector decorated by AS1411 conjugated hyaluronic acid and NLS-GE11 peptide conjugated hyaluronic acid can specifically target circulating malignant cells (CMCs) of cancer patients to deliver the genome editing plasmid for epidermal growth factor receptor (EGFR) knockout. The cell fusion between CMCs and endothelial cells can be detected by the AND logic gate delivered by the multifunctional vector. After EGFR knockout, the edited CMCs exhibit dramatically inhibited cell fusion capability, while unedited CMCs can easily fuse with human umbilical vein endothelial cells (HUVEC) to form hybrid cells. This study provides a new therapeutic strategy for preventing cancer progression and a reliable tool for evaluating cancer cell fusion for precise personalized therapy.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Fusión Celular , Células Endoteliales/metabolismo , Ácido Hialurónico , Edición Génica , Neoplasias/terapia , Receptores ErbB
16.
Zygote ; 31(5): 498-506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37485669

RESUMEN

Placental trophoblastic cells play important roles in placental development and fetal health. However, the mechanism of trophoblastic cell fusion is still not entirely clear. The level of Tspan5 in the embryo culture medium was detected using enzyme-linked immunosorbent assay (ELISA). Fusion of BeWo cells was observed by immunofluorescence. Cell fusion-related factors and EMT-related factors were identified by qRT-PCR and western blotting. Notch protein repressor DAPT was used to verify the role of Tspan5 in BeWo cells. The expression of Tspan5 was significantly increased in embryo culture medium. The fusion of BeWo cells was observed after treatment with forskolin (FSK). Cell fusion-related factors (i.e. ß-hCG and syncytin 1/2) and Tspan5 were significantly increased after FSK treatment. In addition, FSK treatment promoted EMT-related protein expression in BeWo cells. Knockdown of Tspan5 inhibited cell fusion and EMT-related protein levels. Notch-1 and Jagged-1 protein levels were significantly upregulated, and the EMT process was activated by overexpression of Tspan5 in FSK-treated BeWo cells. Interestingly, blocking the Notch pathway by the repressor DAPT had the opposite results. These results indicated that Tspan5 could promote the EMT process by activating the Notch pathway, thereby causing cell fusion. These findings contribute to a better understanding of trophoblast cell syncytialization and embryonic development. Tspan5 may be used as a therapeutic target for normal placental development.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Trofoblastos , Humanos , Femenino , Embarazo , Inhibidores de Agregación Plaquetaria/metabolismo , Línea Celular Tumoral , Placenta , Transducción de Señal , Colforsina/metabolismo , Colforsina/farmacología , Fusión Celular/métodos
17.
BMC Cancer ; 23(1): 497, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264310

RESUMEN

BACKGROUND: Cancer's hallmark feature is its ability to evolve, leading to metastasis and recurrence. Although genetic mutations and epigenetic changes have been implicated, they don't fully explain the leukocytic traits that many cancers develop. Cell fusion between cancer and somatic cells, particularly macrophages, has been suggested as an alternative pathway for cancer cells to obtain new traits by acquiring exogenous genetic material. METHODS: This study aims to investigate the potential biological outcomes of tumor-myeloid cell fusion by generating tumor-macrophage hybrid cells. Two clones with markedly different tumorigenicity were selected, and RNA-seq was used to compare their RNA expressions with that of the control cells. Based on the results that the hybrid cells showed differential activation in several upstream regulator pathways that impact their biological behaviors, the hybrid cells' abilities to recruit stromal cells and establish angiogenesis as well as their cell cycle distributions were investigated through in vitro and in vivo studies. RESULTS: Although both hybrid clones demonstrated p53 activation and reduced growth rates, they exhibited distinct cell cycle distributions and ability to grow in vivo. Notably, while one clone was highly tumorigenic, the other showed little tumorigenicity. Despite these differences, both hybrid clones were potent environmental modifiers, exhibiting significant abilities to recruit stromal and immune cells and establish angiogenesis. CONCLUSIONS: The study revealed that tumor-somatic cell fusion is a potent environmental modifier that can modulate tumor survival and evolution, despite its relatively low occurrence. These findings suggest that tumor-somatic cell fusion could be a promising target for developing new cancer therapies. Furthermore, this study provides an experimental animal platform to investigate cancer-myeloid fusion and highlights the potential role of tumor-somatic cell fusion in modulating the tumor environment.


Asunto(s)
Neoplasias , Animales , Neoplasias/genética , Neoplasias/patología , Células Híbridas/patología , Fusión Celular , Comunicación Celular , Macrófagos/patología
18.
Virus Res ; 334: 199150, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302658

RESUMEN

Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Virosis , Animales , Infecciones por Reoviridae/genética , Fusión Celular , Reoviridae/genética , Reoviridae/metabolismo , Apoptosis
19.
Biol Chem ; 404(10): 951-960, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37246410

RESUMEN

Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?


Asunto(s)
Neoplasias , Línea Celular Tumoral , Fusión Celular
20.
Arterioscler Thromb Vasc Biol ; 43(7): e231-e237, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128914

RESUMEN

BACKGROUND: The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS: High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS: BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS: Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.


Asunto(s)
Proteínas Morfogenéticas Óseas , Células Madre Mesenquimatosas , Animales , Fusión Celular , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales Modificados Genéticamente , Comunicación Celular , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA